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Abstract. A new model for the vibronic problem of the luminescence of 3d3 impurity ions in
the cubic environment is proposed. The approach developed is based on the numerical quantum-
mechanical solution of the dynamic pseudo-Jahn–Teller vibronic problem for the excited states.
The spin–orbit splitting of the4T2 term, and its mixing with2E, as well as the vibronic
interaction with the full-symmetric(A1g) local mode, are taken into account, resulting in the
(08 + 0′8 + 0′′8)⊗ a1 vibronic problem, and the06 ⊗ a1 and07 ⊗ a1 adiabatic problems. The
effective dipole moment operator is built with due regard for a weak odd-parity trigonal crystal-
field component. The vibronic wave-functions are used for the calculation of the band shape
of the luminescence in the R line and U band, as well as for the evaluation of the temperature
dependence of the lifetime decay emission of Cr3+ ions in CdIn2S4:Cr single crystals. The
proposed model provides a very good explanation of the experimental data.

1. Introduction

The Cr3+ ion plays an important role in laser-type solid-state materials. It can be used
directly as an active centre in tunable laser materials [1–3] in the near-infrared spectral
region, and as a sensitizer in rare-earth-doped host materials. The electronic energy levels
of this ion are determined by the interaction of 3d electrons with the electrostatic field of
the host lattice [4].

Absorption and emission spectra of the octahedrally coordinated Cr3+ ion in the visible
region can be illustrated by the well known model of the adiabatic potentials [5, 6], as
shown in figure 1(a), whereQ is the full-symmetric coordinate (the breathing mode) of
the local surroundings of the Cr3+ in crystal. The vibrational relaxation accompanying the
optical4A2(t32)→ 4T2(t22e) excitation results in the strong full-symmetric lattice deformation
due to the change of the electronic configuration, t3

2 → t22e, giving rise to a broad U band
of absorption and emission. The general pattern of the adiabatic potentials of the excited
2Eg, 2T2g manifold closely depends on two key parameters of the system: the cubic crystal-
field parameterDq and the vibronic interaction. Systematic changes of the crystal-field
strength have been observed for a series of garnets, A3B2C3O12 [6], by means of variation
of the crystal composition.
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(a) (b) (c)

Figure 1. Adiabatic potentials of Cr3+ ions in cubic surroundings;Q is the full-symmetric local
coordinate. (a) The spin–orbit interaction is neglected. (b) The spin–orbit splitting of4T2(t22e).
(c) The adiabatic potentials of4T2 split by spin–orbit interaction (a first-order effect).

Much less is known about the vibronic parameter determining (along withDq) the
relative position of the minima of the2E and 4T2 terms (the potentialsU(2E)(Q) and
U(4T2)(Q) in figure 1(a)). In the case of a strong crystal field and a relatively strong
vibronic interaction, the2E well is considerably deeper than that for4T2, and these wells
are separated by a high barrier, suppressing the tunnelling processes. In many crystals with
strong cubic crystal fields, the typical values of the decay times for the luminescence in the
phonon-assisted broad U band and zero-phonon R line are observed to be approximately
10−5 s and 10−3 s respectively [5]. The non-vanishing intensity of the emission in the R
line (the spin-forbidden2E → 4A2 transition) arises from spin–orbit4T2–2E mixing, so
the ratio of the decay lifetimesτ(R)/τ(U) can be roughly estimated as(λ/1)2 whereλ
is the spin–orbit coupling and1 is the gapε(4T2) − ε(2E) in the static lattice (figure 1).
When the barrier separatingU(2E)(Q) andU(4T2)(Q) wells is high, the spin–orbit mixing
of the ground vibronic levels in these wells is negligible (due to the small overlap of the
vibrational wave-functions) even if the gapδ between the minimaU(2E) andU(4T2) is small
(figure 1(a)). In the case of a high barrier, the adiabatic approximation for several thermally
populated ground vibronic levels of2E and4T2 (originating in the emission) works well.

In the case of a moderate crystal field and intermediate vibronic coupling, the well of the
2E term remains the ground state, giving rise to an observable R emission in the tail of the U
band of the luminescence, the intensities of the R and U emission bands being comparable.
But, in this case, the gapδ is relatively small, as is the barrier between the wells of2E
and 4T2, giving rise to an anomalous ratio for the lifetimesτ(R)/τ(U), and anomalous
intensities in the luminescence spectra. Under these conditions, the non-adiabatic problem
for excited states arises, and the ground vibronic levels ofU(2E) andU(4T2) are mixed. The
important idea of tunnelling has been proposed in [7] and developed in [8, 9] in order
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to explain these peculiarities. The ground vibronic levels ofU(2E)(Q) andU(4T2)(Q) are
assumed to be vibronically mixed, which does in fact prove to be possible due to spin–orbit
interaction. The idea of vibronic mixing (tunnelling) is fruitful, but the semiempirical model
used so far [7–9] should be generalized. In fact, in the model of [7–9] only two ground
vibrational levels are mixed, and the spin–orbit interaction as well the off-diagonal part of
the Hamiltonian have been modelled by the only off-diagonal matrix element in the 2× 2
matrix of mixing (tunnelling), the spin–orbit splitting of4T2 being neglected.

The real physical situation for the excited states for 3d3 impurities is much more
complicated. In fact, all of the physical parameters involved in determining the lifetimes
and band shape of the luminescence—namely, the barrier betweenU(2E)(Q) andU(4T2)(Q)

(≈200 cm−1 for Gd3Sc2Ga3O12:Cr3+ [8]), the spin–orbit interaction parameter (λ ≈
100 cm−1 for Cr3+ [7]), and a typical energy for active vibrational quanta (¯hω ∼ 300–
400 cm−1 [3]) are comparable. This is just the case when the conditions of validity for
the adiabatic approximation are broken, and the vibrational kinetic energy should be taken
into consideration as well as the spin–orbit interaction. In this way we arrive at a non-
adiabatic spin-vibronic problem, in which all relevant interactions should be taken into
account simultaneously.

Here we propose a general model for the vibronic problem of luminescence from the
excited states of Cr3+ in the cubic environment. At the same time we assume that a weak odd
crystal field makes the electric dipole transitions partially allowed, but does not significantly
affect the pattern of cubic field levels. We develop the approach based on the numerical
quantum-mechanical solution of the dynamic pseudo-Jahn–Teller vibronic problem, with
allowance made for the spin–orbit splitting of the4T2 term and its mixing with the2E
term. The electron–vibrational (vibronic) wave-functions and energy levels of the system
thus obtained are used for the calculation of the form functions of the luminescence bands
corresponding to the transitions from hybrid vibronic states belonging to the4T2 + 2E
manifold into the ground state4A2, as well as for the evaluation of the temperature
dependence of the decay lifetime of Cr3+ ions in cubic crystals. The proposed model
is applied to chromium-doped CdIn2S4 single crystals, neglecting the trigonal component
of the crystal field.

2. Theory

2.1. Spin–orbit interaction in the excited states of3d 3 ions in a cubic field

The Hamiltonian of a doped crystal can be presented as

H = He(r)+HL(q)+Hev(r, q) (1)

where the electronic partHe = Hc + HSO contains the crystal-field HamiltonianHc and
the spin–orbit interactionHSO (r represents the set of electronic coordinates, andq the
vibrational ones).HL is the Hamiltonian of free lattice vibrations, andHev is the electron–
vibrational (vibronic) interaction for the impurity ion.

In the cubic-crystal-field approximation, three terms,4A2g(t32), 2Eg(t32), and 4T2g(t22e),
participate in the photoluminescence processes (figure 1(a)). Spin–orbit interaction splits
the 4T2 term according to the scheme4T2

.= 08+0′8+06+07 [9], and also mixes2E(0′′8)
with the 08 and 0′8 components of4T2, giving rise to a non-vanishing intensity for the
spin-forbidden R line (here and further on, the symbol ‘g’ for the parity is omitted, and
Bethe’s notation is used for the double-valued irreducible representations of Oh).
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The spin–orbit interaction operator can be presented as [3]

HSO =
∑
i

λ(ri )si · li (2)

where the summation involves the electrons of the unfilled dn shell. The crystal-field wave-
functions|αS0Mγ 〉 of the d3 shell, expressed in terms of Slater’s determinants, are given
in [4] (S,M are the quantum numbers of the full spin and its projection,0, γ label the
irreducible representation and basis functions respectively, andα = tn2e3−n). Using the
explicit expressions for the wave-functions|t22e4T2〉 and |t32 2E〉, as well as the approach
based on the theory of irreducible tensors and described in [4] in detail (see also [10]), we
find the matrix ofHSO in the basis of4T2g(t22e), and the matrix of the spin–orbit mixing
4T2g(t22e)–2Eg(t32) (see equations (7.50), (7.65) in reference [4]). The matrix elements of
HSO contain two parametersζ1 and ζ2 (ζ and ζ ′ in the notation of [4]); these parameters
are expressed in terms of the matrix elements ofλ(r) in the basis of t2 functions (parameter
ζ1) and t2–e mixing (parameterζ2) (see equation (7.13) and p 175 in [4]).

The matrices of the spin–orbit interactions〈αS0Mγ |HSO |α′S ′0′M ′γ ′〉 can be reduced
in the symmetry-adapted basis corresponding to the double-valued representations of the Oh

group. The wave-functions of the fine-structure levels corresponding to the double-valued
irreducible representation0i are obtained from the initialS0 states (S0 = 2E, 4T2) by
means of the unitary transformation [10]

|αS0;0iγi〉 =
∑
γSγ

|αS0γSγ 〉〈0SγS0γ |0iγi〉 (3)

where0i are the double-valued representations,γi enumerate the basis functions of0i ,
0S are the double-valued irreducible representations with the bases corresponding to the spin
components forS = 3

2 (4T2) andS = 1
2 (2Eg), the γS enumerate the basis functions of0S

(the values of the full spin projections),01/2 = 06, 03/2 = 08 (γ1/2 = ± 1
2, γ3/2 = ± 1

2,± 3
2),

and〈0SγS0γ |0iγi〉 are the Clebsch–Gordan coefficients of the double group Oh (which are
given in [11]). Using equation (3), one can obtain the wave-functions of the fine-structure
levels of the4T2g (t22e) term in the following form:∣∣∣∣08,±3

2

〉
=
√

4

15
ϕ±

(
±1

2

)
+ 1√

5
ϕ∓

(
∓3

2

)
∓ i√

15

∣∣∣∣ζ,∓1

2

〉
∣∣∣∣08,±1

2

〉
= − 1√

5
ϕ±

(
∓1

2

)
± i

√
3

5

∣∣∣∣ζ,∓3

2

〉
∣∣∣∣0′8,±3

2

〉
= −

√
3

20
ϕ±

(
±1

2

)
+ 1√

20
ϕ∓

(
∓3

2

)
∓ i

√
3

5

∣∣∣∣ζ,∓1

2

〉
∣∣∣∣0′8,±1

2

〉
=
√

5

12
ϕ∓

(
±3

2

)
− 1√

20
ϕ±

(
∓1

2

)
∓ i√

15

∣∣∣∣ζ,∓3

2

〉
∣∣∣∣07,±1

2

〉
= ±1

2
ϕ±

(
±3

2

)
∓ 1√

12
ϕ∓

(
∓1

2

)
− i√

3

∣∣∣∣ζ,±1

2

〉
∣∣∣∣06,±1

2

〉
= ∓ 1√

12
ϕ∓

(
±3

2

)
∓ 1

2
ϕ±

(
∓1

2

)
− i√

3

∣∣∣∣ζ,∓3

2

〉

(4)

whereϕ±(γS) are the cyclic components of4T2 related to the C4 axis (figure 2):

i|ξ, γS〉 ± |η, γS〉 ≡ ϕ±(γS).
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The following shorthand notation is also used in equations (4):∣∣∣∣4T2(t
2
2e), 08, γ3/2 = −3

2

〉
≡
∣∣∣∣08,−3

2

〉
etc.

The wave-functions of0′′ arising from2E(t32) are the following:∣∣∣∣0′′8,±3

2

〉
= ∓

∣∣∣∣v,∓1

2

〉 ∣∣∣∣0′′8,±1

2

〉
= ∓

∣∣∣∣u,±1

2

〉
(5)

where ∣∣∣∣2E(t32), 0
′′
8, γ3/2 = −3

2

〉
≡
∣∣∣∣0′′8,−3

2

〉
etc.

(a) (b)

Figure 2. The octahedral surroundings of Cr3+ ions in a crystal: (a) the tetragonal coordinate
system; and (b) the trigonal coordinate system.

The first order spin–orbit splitting of the4T2(t22e) term is shown in figure 1(b). The
second-order effect due to2E–4T2 mixing removes the accidental0′8, 06 degeneracy, and
leads to additional stabilization of0′′8.

2.2. Vibronic interaction

Under the optical excitation of the system in the region of the U band (4A2(t32)→ 4T2(t22e)),
a one-electron transition, t3

2→ t22e, occurs, and is accompanied by strong deformation of the
Cr3+-ion crystal surroundings. The dominant effect is the shift of the equilibrium position of
the full-symmetric vibrational coordinate (the A1g mode) [12]. Numerical calculations of the
vibronic coupling parameters [12, 13] for the Cr3+ ion in ruby showed that the contribution
of the full-symmetric A1 modes in the second moment of the U band is approximately 85%
of the total value of〈�2〉; meanwhile the contribution of the Jahn–Teller vibrations (Eg

and T2g modes) is estimated as 15% of〈�2〉. This is why here we confine ourselves to
a simplified vibronic model, taking only the local A1 mode into account. Therefore we
neglect the interaction with the Jahn–Teller E and T2 modes (the Jahn–Teller problem of the
U-band absorption is considered in [14]), and the operator of the linear electron–vibrational
interaction is presented in the following form:

Ĥev = V (r)q. (6)

Hereq ≡ qA1 is the full-symmetric coordinate of the octahedral local surroundings of Cr3+

in the crystal lattice:

q = 1

l0
√

6
(X1−X4+ Y2− Y5+ Z3− Z6) (7)
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whereXi , Yi , and Zi are the Cartesian displacements of the local surroundings of the
impurity ion (the enumeration of the ligands, and the coordinate system are shown in figure
2), andl0 = (h̄/Mω)1/2, soq is a dimensionless coordinate (ω is the frequency of vibration,
andM is its effective mass).

The potential functionV (r) (having the dimension of energy) can be expressed as a
derivative atq = 0:∑

i,α

∂W(|ri −Rα|)
∂q

∣∣∣∣
q=0

whereW(|ri − Rα|) is the potential energy of the interaction of theith electron of the
chromium ion with theαth atom of the host crystal. In the point-charge crystal-field model,
Wc(|ri−Rα|) is the crystal-field potential acting on the 3d3 shell of the impurity ion. Using
the explicit form of theq-vibration (equation (6)), one can see that

V (r) = l0 ∂

∂R0

∑
i

Wc(|ri −R0|) (8)

where the cubic crystal-field potentialWc(ri−R0) depends only on the distanceR0 between
the position of the impurity ion and the neighbouring ions. It should be noted that the
distanceR0 determined in this way relates to the host lattice unperturbed by the electrons
of the 3d shell of the impurity ion.

The matrix elements ofV (r) can easily be expressed in terms of one-electron
contributions. These matrix elements depend on the occupation numbers for t2 and e shells
in the S0-terms:

〈tm2 enS0Mγ |V (r)|tm2 enS0Mγ 〉 = mvt + nve (9)

wherevt andve are the one-electron matrix elements ofV (r) in the T2 and E bases of the
d functions:

vt = 〈ξ |V (r)|ξ〉 = 〈η|V (r)|η〉 = 〈ζ |V (r)|ζ 〉
ve = 〈u|V (r)|u〉 = 〈v|V (r)|v〉.

(10)

The valuesvt andve play the role of the partial (one-orbital) contributions to the vibronic
coupling parameter related to the electrons occupying the t2 and e orbitals respectively.

In the case of the 3d3 shell under consideration, we obtain

〈4T2(t
2
2e)0Mγ |V (r)|4T2(t

2
2e)0Mγ 〉 = 2vt + ve

〈4A2(t
3
2)0Mγ |V (r)|4A2(t

3
2)0Mγ 〉 = 3vt .

(11)

In the crystal-field approximation, using equation (9) one can find

vt = −4l0
∂

∂R0
Dq0 ve = 6l0

∂

∂R0
Dq0 (12)

whereDq0 is the crystal-field parameter defined as usual [9]:

〈t2|Hc|t2〉 = −4Dq0 〈e|Hc|e〉 = 6Dq0. (13)

It should be noted that the parameterDq0 as so far defined (labelled with the subscript
0) relates to the positionsR0 of the surrounding ions in the host lattice, i.e. in the lattice
without electrons of the unfilled shell of the impurity ion.

In the case of an orbitally non-degenerate ground state (4A2 in the case under
consideration), well separated from the excited ones, the original Hamiltonian (1) can be
transformed in order to take into account the shifts of the ions caused by the impurity
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electronic shell in its ground state. This shift can be found from the adiabatic potential
expression for the4A2(t32) term:

UA(q) = h̄ω
2
q2+ 3vtq

whereω is the vibrational frequency. The equilibrium positionqA can be expressed as

qA = −3vt
h̄ω
. (14)

The Hamiltonian (1) can be presented as follows:

H = H0+H ′ev (15)

where the new zeroth-order HamiltonianH0 is the following:

H0 = He(r)+ V (r)qA + h̄ω
2
q2

A +
h̄ω

2

[
(q − qA)

2− ∂2

∂(q − qA)2

]
. (16)

The redetermined vibronic interaction is

H ′ev = (V (r)+ h̄ωqA)(q − qA) ≡ v(r)Q (17)

whereQ = q − qA is the shifted full-symmetric dimensionless coordinate of the local A1

mode, andv(r) = V (r) + h̄ωqA is the vibronic potential function adapted to the new
equilibrium positionsqA of the ions in the ground electronic state4A2. The explicit form
of v(r) shows that the mean value ofv(r) in the ground state vanishes:

〈4A2(t
3
2)|v(r)|4A2(t

3
2)〉 = 0 (18)

ensuring that the equilibrium position of the new coordinateQ in the ground state4A2 is
zero (QA = 0), and soH ′ev is the vibronic interaction adapted to the positions of the ions
shifted by the 3d3 shell. Only this vibronic interaction has real physical meaning for the
impurity centre in a cubic crystal.

The ground-state eigenfunction ofH0 is the adiabatic function belonging to the ground
electronic state4A2:

|4A2(t
3
2)〉8n(Q). (19)

Here, 8n(Q) is the harmonic oscillator wave-function with quantum numbern. The
corresponding adiabatic eigenvalues are the following:

εn(
4A2) = −12Dq0− h̄ω

2
q2

A + h̄ω
(
n+ 1

2

)
≡ −12Dq0− 9v2

t

2h̄ω
+ h̄ω

(
n+ 1

2

)
. (20)

The first term in (20) is the crystal-field energy, and the second one is the potential energy
gain due to the interaction between the t3

2 electronic shell in the4A2 state and the crystal
environment shifted to the positionqA. Using equation (11), one can find the matrix elements
of H ′ev in the 4T2(t22e) basis:

〈4T2(t
2
2e)0Mγ |H ′ev|4T2(t

2
2e)0Mγ 〉 = vQ (21)

where v = ve − vt is the vibronic parameter determining the shift of the coordinate
Q accompanying the optical excitation4A2(t32) → 4T2g(t22e) (the t2 → e one-electron
transition). The new positionQT of the surrounding ions will be (figure 1(a))

QT = −ve − vt
h̄ω

. (22)

Equation (22) shows thatv = ve − vt is the only physical parameter of the vibronic inter-
action that is closely related to the difference between the spatial electronic distributions
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in the e and t2 d states. It is important to note that this parameter can be expressed as a
derivative of the crystal-field parameter 10Dq (equations (13)):

v = ∂

∂R0
10Dq0 = − 5

R0
10Dq0.

This expression can be used in order to establish a correlation between the crystal-field
parameter and the vibronic constant for the series of crystals.

Table 1. The matrix of the vibronic and spin–orbit interaction for the4T2, 2E manifold, in the
basis of the double-valued irreducible representations (symbols enumerating the basis functions
are omitted). Within the matrix,X stands forvQ+ 10Dq.

4T2, 08
4T2, 0′8

2E, 0′′8
4T2, 06

4T2, 07

4T2, 08 − ζ1

6
+X 0 −

√
2

15
ζ2 0 0

4T2, 0′8 0
ζ1

4
+X −

√
6

5
ζ2 0 0

2E, 0′′8 −
√

2

15
ζ2 −

√
6

5
ζ2 ER 0 0

4T2, 06 0 0 0
ζ1

4
+X 0

4T2, 07 0 0 0 0 −5ζ1

12
+X

The electron–vibrational energy levels of4T2 can be found in the adiabatic approach,
neglecting the spin–orbit splitting in4T2, and the4T2–2E mixing:

ε′n(
4T2) = −2Dq0− (vt − ve)

2

2h̄ω
+ h̄ω

(
n′ + 1

2

)
. (23)

In the adiabatic approach, the gap

h̄ωm(U) = 10Dq0+ 9v2
t

2h̄ω
(24)

is the energy of the maximum of the U band, which should be attributed to the magnitude
of 10Dq. As distinct from 10Dq0 (equations (13)), the value 10Dq is determined afresh as
a result of the electrons of the impurity shifting the ligands to the positionqA. In fact, this
value is just the observable 10Dq corresponding to the first moment of light absorption in
the U band (i.e. roughly to the maximum of the U band). Taking into account the spin–orbit
interaction in the excited2E(t32), 4T2(t22e) manifold, we arrive at a non-adiabatic dynamic
spin-vibronic problem involving spin–orbit and vibronic mixing in the excited states. The
matrix Hamiltonian of the excited4T2, 2E manifold can be expressed as

H = h̄ω
2

(
Q2− ∂2

∂Q2

)
1+ HSO + H′ev (25)

where1 is the unit matrix, and the matrixHSO + Hev in the basis set of the double-valued
representations is presented in table 1, whereER is the energy of the R line (see figure 1).
An approximate analytical expression forER for the actual region of crystal-field parameters
is given in [8]. For the sake of simplicity, later on we assume, as usual (see p 175 in [4]),
that ζ1 = ζ2 ≡ λ.
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Figure 3. Adiabatic potentials of Cr3+ ions in CdIn2S4 single crystal, with allowance made for
the spin–orbit interaction.

2.3. The dynamic vibronic problem

The spin–orbit and vibronic interactions are expressed in terms of non-commutating
matrices, and therefore we arrive at the three-level pseudo-Jahn–Teller problem in the system
of three quadruplet08, 0′8, and0′′8 states (the(08+0′8+0′′8)⊗ a1 problem). Two Kramers
doublets,06(

4T2) and07(4T2), are not mixed by the vibronic interaction either with each
other or with other sublevels of4T2 and 2E, and are shown as parallel parabolic terms,
whose equilibrium position is shifted to the positionQT2 with respect to the ground term
4A2 (figure 1(c)). The solution of the vibronic problem for these terms is trivial:

εn(06) = h̄�06 + h̄ω
(
n+ 1

2

)
(26)

εn(07) = h̄�07 + h̄ω
(
n+ 1

2

)
(27)

where n is the quantum number of the harmonic oscillator, and�06 and �07 are the
frequencies of the zero-phonon transitions06→ 4A2 and07→ 4A2:

h̄�06 = 10Dq + λ
4
− v2

2h̄ω

h̄�07 = 10Dq − 5λ

12
− v2

2h̄ω
.

(28)

In turn, three levels,08, are mixed, and the pattern of the adiabatic curves (calculated for
the set of parameters for CdIn2S4:Cr; see section 3) is rather complicated. The positions of
the first two unperturbed vibrational (harmonic oscillator) levels are shown in figure 3 by
the dotted lines. It can be seen that not even the first excited level can be treated in the
adiabatic approximation. From this point of view, the adiabatic potential picture can be used
only for visualization of the physical situation, and not to lead to any rational quantitative
conclusions.

The hybrid vibronic states corresponding to the dynamic pseudo-Jahn–Teller problem
(08 + 0′8 + 0′′8) ⊗ a1 are found as an expansion in terms of products of the zeroth-order
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approximation electronic functions (the basis functions of the matrix of table 1) and functions
of the non-shifted harmonic oscillator functions8n(Q):

9ν(r, q|08γ8) =
∞∑
n=0

[Cnν(08)|4T2, 08γ8〉 + Cnν(0′8)|4T2, 0
′
8γ8〉

+ Cnν(0′′8)|2E, 0′′8γ8〉]8n(q). (29)

Later, the eigenvalues and eigenvectors of the vibronic problem will be used for the
evaluation of the lifetimes and luminescence band shape of CdIn2S4:Cr3+.

2.4. The effective dipole moment, and the form function of the luminescence spectra

The parity-forbidden4T2 → 4A2 electric dipole transitions are partially allowed by the
presence of a static trigonal crystal field in the host lattice CdIn2S4. The spin–orbit mixing
4T2 → 2E makes the spin-forbidden2E → 4A2 transition allowed, which, in this way,
takes part of intensity from the4T2 → 4A2 transition. In the framework of the first-order
perturbation theory, the effective dipole momentD, taking into account the odd component
of the crystal field, can be presented as

D = 2

1Eeo
PV odd (30)

whereP is the dipole moment,V odd is the odd-parity crystal field, and1Eeo is an effective
gap between even (3d) and odd levels in the energy spectrum. In the case of D3 symmetry,
this potential is the following [3]:

V odd= 2
√
π√
7
E(r)[Y33(ϑ, ϕ)+ Y3−3(ϑ, ϕ)] (31)

whereE(r) is the radial part, and the spherical harmonics are quantified along the trigonal
axis (figure 2(b)). The effective dipole moment can be presented in terms of circular comp-
onents (D± = ∓(1/

√
2)(DX ± iDY ),D0 = DZ, etc):

D = −D−k+ −D+k− +D0k
0 (32)

where

D− = 2

1Eeo
P−V odd D+ = 2

1Eeo
P+V odd D0 = 2

1Eeo
P0V

odd

are circular components (in the planeXY perpendicular to C3(Z), with k± = ∓(1/
√

2)(i±
ij) and k0 = k, where i, j, andk are the unit vectors alongX, Y , andZ; see figure
2(b)). To construct the matrix forD, it is convenient to pass to the trigonal basis for d
functions [4]:

t2


x+ = −(1/

√
3)(εξ + ε̄η + ζ )

x− = (1/
√

3)(ε̄ξ + εη + ζ )
x0 = (1/

√
3)(ξ + η + ζ )

(33a)

e

{
u+ = −(1/

√
2)(u+ iv)

u− = −(1/
√

2)(u− iv)
(33b)
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whereε = exp(2π i/3). Now we pass to the trigonal basis in the many-electron4A2(t32) and
4T2(t22e) functions. The Clebsch–Gordon coefficients for the trigonal basis of Oh are given
in [3]. The results are the following:

|4A2〉 = |x0x+x−|
|4T2x+〉 = i√

2
(|u+x−x+| − |u−x0x−|)

|4T2x−〉 = i√
2
(−|u−x−x+| − |u+x0x+|)

|4T2x0〉 = i√
2
(|u+x0x−| − |u−x0x+|)

(34)

where| · · · | denotes the Slater determinant (MS = 3
2). The one-electron matrix elements of

D in the trigonal basis are listed in table 2, where the only semiempirical parameter,d, is
expressed as follows:

d =
√

10

211Eeo
e〈rE(r)〉. (35)

In equation (35),e stands for the electron charge, and〈· · ·〉 is the mean value ofrE(r)
calculated by means of the d functions of the 3d3 ion:

〈rE(r)〉 =
∫ ∞

0
dr r2rE(r)R2

3d(r).

Omitting the details of the calculations, we can represent the matrix elements of the effective
optical transition operatoruD (u is the light polarization vector) as follows:

〈08γS(
4A2)|uD|ϕ±(γS)〉 = d

2
√

3
(1∓ i)[3

√
2 sinϑ cosϕ ± i 3

√
6 sinϑ sinϕ − 4 cosϑ ]

〈08γS(
4A2)|uD|ζ(γS)〉 = id√

3
[3
√

2 sinϑ cosϕ + 2 cosϑ ].
(36)

In equation (36),ϑ andϕ are the polar coordinates ofu in the coordinate system depicted
in figure 2. The matrices of the operatoruD for the 4T2(0607080

′
8)→ 4A2(08) transition

can be easily obtained using equations (36) and wave-functions (4) and (5).

Table 2. One-electron matrix elements of the operatorD in the trigonal basis ofd-functions.

u+ u−

x+ −√2dk0 0
x− 0

√
2dk0

x0
√

2dk− 0
x+ 0 −2

√
2dk−

x− −2
√

2dk+ 0
x0 0 −√2dk+

3. Experiment and discussion

3.1. Experimental results

The model developed has been used for the description of the experimental results on
the radiative characteristics of the Cr3+ ions in CdIn2S4:Cr single crystals. This ternary
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compound is crystallized in the normal spinel structure, belonging to the O7
h (Fd3m) space

group [15]. According to the EPR data, chromium ions in the trivalent state substitute for
indium at the octahedral sites of the host lattice (site symmetry D3d (3̄m)) [16].

A full description of the experiment is given in [17, 18]. It should be stressed here that
the results presented below were obtained for high-optical-quality CdIn2S4:Cr single crystals
grown by the method of chemical transport reaction. The samples with Cr concentration
in the region 0.2–0.5 at.% had the octahedral form, with natural (111)-oriented mirror-like
faces, and linear sizes of 3–8 mm.

Figure 4. The temperature dependence of the decay time constant of a 3d3 ion in a crystal.
Dashed line, solid line, and dotted line: the theoretical curves for the vibronic parameters
v = 2.50, 2.73, and 3.00, respectively. (�: experimental measurements for CdIn2S4:Cr3+.)

The experimental temperature dependence of the luminescence decay time constant for
CdIn2S4:Cr crystals is shown in figure 4 by the open squares (�). The measurements have
been carried out for resonant excitation of Cr3+ ions by pulsed radiation (pulse duration:
τ ≈ 10−8 s), the wavelength of which corresponds to the chromium impurity4A2→ 4T2g

absorption band,λex = 650 nm [19].
Attention should be paid to the anomalously fast luminescence decay at low temperatures

(T 6 80 K, τ(R) = 8×10−5 s), when the time constant is determined mainly by the lifetime
of the forbidden transitions2E → 4A2. As was already mentioned, theτ(R)-value for
trivalent chromium ions in octahedral sites is typically about≈10−3 s, soτ(R) obtained for
CdIn2S4:Cr is shorter by at least an order of magnitude. Figure 5(a) shows the steady-state
luminescence spectra of Cr3+ ions in CdIn2S4:Cr, accurately measured at temperatures of
150 and 300 K (solid circles). The excitation of the steady-state luminescence, provided by
a krypton-ion laser (wavelength,λex = 647 nm), was also within the U absorption band of
Cr3+ ions.

The experimental dependence of the emission intensity at the maximum of the U band
(12× 103 cm−1), obtained by means of slow temperature scanning of the sample, is shown
in figure 5(b) by open circles. In order to avoid the influence of the temperature shift of
the spectral maximum, the measurements were carried out at low spectral resolution.

3.2. Discussion

The anomalous lifetime for luminescence decay seems to be an indication that the vibronic
(non-adiabatic) mixing of the spin–orbit components of4T2 and2E plays an important role.
This is exactly the case for a low barrier between theU(4T2)(Q) andU(2E)(Q) potential
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(a) (b)

Figure 5. (a) The band shapes of the luminescence of CdIn2S4:Cr3+ at 150 and 300 K. (b) The
U emission band intensity as a function of the temperature (solid line: theoretical calculation;
circles: experimental results).

wells, when the results of the solution of the dynamic pseudo-Jahn–Teller problem are to
be used. The theoretical model developed for the pseudo-Jahn–Teller effect deals with the
cubic d3 centre, taking into account an odd-parity trigonal field. Cr3+ ions in CdIn2S4 are
affected, along with the strong cubic field of six S ions, by the weak even-parity trigonal
field of six In ions in the next coordination sphere. Since the main effect of the vibronic
problem is related to the pseudo-Jahn–Teller effect in a large cubic field, we will neglect
the trigonal crystal field.

For numerical calculations of the vibronic Hamiltonian (equation (25), table 1), 50
unperturbed oscillator states were taken into account (general dimension of the vibronic
matrix: 150× 150), and the transitions were calculated between the 20 lowest states (the
full number of transitions taken into account was 1200). The population of the hybrid levels
in the electronically excited states is assumed to be in thermal equilibrium. According to the
estimation, the chosen dimension of the basis ensures high accuracy of the evaluation of the
vibronic levels populated at actual temperatures. As a result of calculations, a set of vibronic
level energies of Cr3+ ions in CdIn2S4 have been obtained. For CdIn2S4 the following key
parameters are used: 10Dq = 14 900 cm−1 [19]; λ = 100 cm−1; h̄ω = 366 cm−1 [20];
ER = 12 960 cm−1. For this set of parameters, the vibronic levels of the(08+0′8+0′′8)⊗a1

problem versus the vibronic parameterv are shown in figure 6. In the case of moderate or
strong vibronic interaction, the ground state or/and the first excited states prove to be the
hybrid states.

Using the eigenfunctions of the vibronic(08+0′8+0′′8)⊗a1 problem (equation (29)), as
well as the adiabatic solution for06 and07, one can calculate the temperature dependence of
the radiative decay lifetimeτ(T ) as the thermal average of the reciprocal probabilities of the
radiative transitions from all of the excited levels. The calculated temperature dependence
of τ(T ) is shown in figure 4 by the solid line. The shape of theτ(T ) curve depends rather
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Figure 6. The vibronic spectrum of the pseudo-Jahn–Teller(08+0′8+0′′8)⊗a1 vibronic problem
for CdIn2S4:Cr3+.

strongly on the vibronic parameterv. The influence of the spin–orbit interaction on the
curve shape is much less strong, and leads mainly to the decrease of the difference between
theτ -values at low and high temperatures, and to some smoothing of the curve. The best fit
of the experimental data and the calculated values is achieved forv = 2.73h̄ω. Inspecting
the vibronic levels (figure 6), one can see that atv = 2.73h̄ω the ground state can be
considered roughly as the harmonic oscillator level associated with the2E electronic state.
At the same time this level has some admixture of the4T2 electronic state, and several
zeroth-order vibrational states. In contrast, the first excited level (like the other levels) is a
hybrid state, having a strong admixture of the excited electronic and vibrational states. One
can see (figure 4) that the model of hybrid states provides full agreement of the calculated
and measured decay lifetimes over a wide temperature region.

In the calculation of the form function of the luminescence band, the vibronic
relaxation in the excited manifold is assumed to occur considerably more quickly than the
luminescence. Considering thus the thermodynamic equilibrium population of the excited
vibronic levels, one can present the form function of the luminescence band in the following
form:

F(�) = 4π

3h̄
d2(4+ 5 sin2 θ)Z−1

(
1

sinh(β/2)
[exp(−h̄�06/kT )5a(�−�06)

+ exp(−h̄�07/kT )5a(�−�07)] + 2
∑
nν

exp(−εν(08)/kT )

× (|Cnν(08)|2+ |Cnν(0′8)|2)δ(εν(08)− h̄ω
(
n+ 1

2

)
− h̄�)

)
. (37)

Hereθ is the angle between the polarization vector of the light emitted with the frequency
� and the trigonal axis,β = h̄ω/kT , εν(08) are the hybrid vibronic levels of the
(08+0′8+0′′8)⊗a1 pseudo-Jahn–Teller problem, andZ is the statistical sum of the excited
vibronic states, including both hybrid states and pure vibrational levels arising from06 and



A pseudo-Jahn–Teller vibronic model of d3 ions 5309

07 (equations (27)):

Z = 4
∑

exp

(
−εν(08)

kT

)
+ 1

sinh(β/2)

[
exp(−h̄�06/kT )+ exp(−h̄�07/kT )

]
. (38)

The first two terms in (37) represent the well known Pekar shapes of intensity distributions
(‘Pekarians’) [11–13] corresponding to the adiabatic solutions of the electron–vibrational
problem for the terms06 and 07; 0a(� − �0) is the ‘Pekarian’ with the zero-phonon
frequency�0 and the heat-release parametera = v2/h̄2ω2 (the Pekar–Huang–Rhys
parameter) [12, 13, 21]:

5a(�−�0) = exp

(
−a

2
cosh

(
β

2

))
×

n=+∞∑
n=−∞

exp

(
−nβ

2

)
In

(
a

2 sinh(β/2)

)
δ(h̄(�−�0)− nh̄ω) (39)

whereIn(x) is the modified Bessel function, and the frequencies�06 and�07 of the zero-
phonon lines for the06 → 4A2 and 07 → 4A2 transitions, respectively, are given by
equation (28).

The third term in (37) is the contribution of the transitions originating from the vibronic
levelsεν to the full luminescence band4T2, 2E→ 4A2. Since the local vibration is involved
in the initial model of the impurity ion, the luminescence band shape so far obtained is
described by a ‘palisade’ of the discrete (non-broadened) lines.

(a) (b)

Figure 7. A palisade of vibronic lines in the luminescence of CdIn2S4:Cr3+ for temperatures
of 150 K (a) and 300 K (b).

Figure 7 represents the luminescence spectra averaged over the directionsθ at 150
and 300 K, reflecting directly the complicated irregular structure of the vibronic states.
The observable optical band is smoothed due to the vibronic interaction with the continuous
phonon spectrum of acoustic and optic modes. To take into account this effect, each discrete
line has been replaced by a Gaussian distribution (with the half-widthγ = h̄ω), the area
of each band being equal to the intensity of the line (the probability of the corresponding
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transition). A special case represents the zero-phonon R line. The intensity (area) of this
line is determined by the Debye–Waller factor, and is usually weak, providing moderate or
strong vibronic interaction. But, even though it is weak, this line stands out against the
background of the envelope of the phonon-assisted band, due to the fact that the phonon
dispersion does not contribute directly to the width of the zero-phonon line [12, 13, 21]. As
one can see from the both the adiabatic potentials (figure 3) and the vibronic level pattern
(figure 6), the ground vibronic level in the2E(08) adiabatic minimum is well isolated, and
the tunnelling processes affect this level only slightly in the region of the vibronic coupling
parameterv 6 2.8h̄ω. In this region, and at relatively weak temperatureskT < h̄ω, the most
important contribution to the R line gives the2E(ν = 0)→ 4A2(n = 0) optical transition,
i.e. the transition between the ground vibronic levels. In the numerical simulation of the
luminescence band, the half-width of this line has been taken equal to 0.2γ–0.5γ , giving
rise to a sharp R peak in the full spectrum. In the calculation presented, the temperature
dependence of the half-width of the R line is neglected. At the same time, the population
of the excited levels in the non-equidistant vibronic spectrum gives rise to the additional
significant non-uniform broadening of the zero-phonon line with the increase of temperature.

Figure 8. Contributions to the luminescence band shape from the transitions08(
4T2,

2E) →
4A2, 06(

4T2)→ 4A2, and07(
4T2)→ 4A2 at a temperature of 300 K.

Figure 8 shows the contributions to the luminescence bands arising from08(
4T2,

2E)→
4A2, 06(

4T2) → 4A2, and 07(
4T2) → 4A2 separately. One can see that08 → 4A2

transitions contribute mainly to the full band of the luminescence. The spectral shapes of
the U band, calculated forT = 150 K and 300 K, taking into account all three of the
contributions mentioned above, are displayed in figure 5(a) by solid lines. The calculations
were performed for the vibronic constant valuev = 2.73h̄ω, providing the best fit for the
decay lifetime as a function of the temperature. The calculated temperature dependence
of the U emission intensity in the spectral maximum is shown in figure 5(b). A good
correspondence of the theoretical curves and experimental points can be observed.

4. Conclusion

We have considered the problem of luminescence from the excited manifold2E, 4T2 of a
3d3 ion in a crystal. In the case of a moderate cubic crystal field and intermediate vibronic
coupling, the adiabatic approximation for the description of the excited states proves to
be invalid, due to non-adiabatic mixing of three08 levels arising from4T2(t22e) and2E(t32)
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terms. Therefore, for many crystals doped by trivalent chromium ions, the dynamic pseudo-
Jahn–Teller(08+0′8+0′′8)⊗ a1 problem appears. Solving this problem, we have obtained
a comprehensive explanation of the temperature behaviour of the luminescence kinetic and
steady-state U-emission-band intensity, as well as of the spectral shape of this band for Cr3+

ions in CdIn2S4 host crystals. Very good agreement of the experimental observations and
theoretical calculations shows that the suggested pseudo-Jahn–Teller vibronic model of Cr3+

reflects the main features of physical reality. In particular, the theoretical model developed
for a cubic d3 centre gives a reasonable fit to the system possessing a trigonal component
of the crystal field. It appears that the fact that the trigonal field can be of the same order of
magnitude as the spin–orbit coupling is not important for the accuracy required. Moreover,
incorporation of the trigonal crystal field would add two new parameters of this field (Dσ

andDτ in the conventional notation; see, for example, p 117 in reference [10]). Although
the local symmetry for each Cr3+ centre is trigonal,Dσ andDτ cannot be determined
independently from polarization spectroscopy, due to presence of four trigonal equivalent
positions of Cr3+ in the spinel lattice. This theory, possessing two additional semiempirical
parameters, would be excessively flexible, and the fit to experiment could be considered
artificial. For this reason, we confined ourselves to a theoretical model with the main
emphasis on a large cubic field and pseudo-Jahn–Teller coupling. It should be noted at the
same time that the Jahn–Teller interaction in4T2(t22e) has been neglected. Although this
interaction is expected not to be strong, we intend to develop in the future a more precise
model that takes into account both trigonal crystal-field and Jahn–Teller interactions in the
4T2 term.

Acknowledgments

We are grateful to the referees for their helpful comments.

References

[1] Moulton P F 1985 Tunable paramagnetic-ion lasersLaser Handbookvol 5, ed M Bass and M L Stitch
(Amsterdam: North-Holland) pp 203–288

[2] Henderson B and Imbush G F 1988Contemp. Phys.29 235
[3] Caird J A, Payne S A, Staver P R, Ramponi A J, Chase L L and Krupke W F 1988IEEE J. Quantum

Electron.24 1077
[4] Sugano S, Tanabe Y and Kamimura H 1970Transition-Metal Ions in Crystals(New York: Academic)
[5] Zhang Z, Grattan K T V and Palmer A W 1993 Phys. Rev.48 3273
[6] Yamaga M, Henderson B and O’Donnell K P 1992Phys. Rev.46 3273
[7] Yamaga M, Henderson B and O’Donnell K P 1989J. Phys.: Condens. Matter1 9175
[8] Yamaga M, Henderson B, O’Donnell K P, Cowan C T and Marshall A 1990J. Appl. Phys.B 50 425
[9] Yamaga M, Henderson B, O’Donnell K P and Yue G 1990J. Appl. Phys.B 51 132

[10] Tsukerblat B S 1994 Group Theory in Chemistry and Spectroscopy. A Simple Guide to Advanced Usage
(London: Academic)

[11] Koster G F, Dimmock J O, Wheeler R G and Statz H 1963Properties of the Thirty-Two Point Groups
(Cambridge, MA: MIT Press)

[12] Perlin Yu E and Tsukerblat B S 1984 Optical bands and polarization dichroism of Jahn–Teller centers
Dynamical Jahn–Teller Effect in Localized Systemsed Yu E Perlin and M Wagner (Amsterdam: Elsevier)
pp 251–346

[13] Perlin Yu E and Tsukerblat B S 1974Electron–Vibrational Interactions in the Optical Spectra of Impurity
Paramagnetic Ions(Kishinev: Stiinta) (in Russian)

[14] Muramatsu S and Sakamoto N 1979J. Phys. Soc. Japan46 1273
[15] Czaja W 1970Phys. Condens. Mater.10 299
[16] Henning J C M, Bongers P F, Van Den Boom and Voermans A B 1969Phys. Lett.30A 307



5312 B S Tsukerblat et al

[17] Kulikova O V, Kulyuk L L, Popov S M, Strumban E E, Tezlevan V E, Bove J and Fortin E 1992Fiz. Tverd.
Tela 34 1907

[18] Kulikova O V, Kulyuk L L, Popov S M and Tezlevan V E 1993Japan. J. Appl. Phys. Suppl.3 32 484
[19] Ueno M 1979J. Phys. Soc. Japan46 1887
[20] Gubanov V A, Kulikova O V, Kulyuk L L, Radautsan S I, Ratseev S I, Salivon G I, Tezlevan V E and

Tsisanu V I 1988 Fiz. Tverd. Tela30 457
[21] Perlin Yu E 1963Sov. Phys.–Usp.6 983


